Brain aging and speech perception: Effects of background noise and talker variability.

Publication Type:

Journal Article


Neuroimage, Volume 227, p.117675 (2021)


Adult, Aged, Aged, 80 and over, Aging, Attention, Brain, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Noise, Speech Perception, Young Adult


<p>Speech perception can be challenging, especially for older adults. Despite the importance of speech perception in social interactions, the mechanisms underlying these difficulties remain unclear and treatment options are scarce. While several studies have suggested that decline within cortical auditory regions may be a hallmark of these difficulties, a growing number of studies have reported decline in regions beyond the auditory processing network, including regions involved in speech processing and executive control, suggesting a potentially diffuse underlying neural disruption, though no consensus exists regarding underlying dysfunctions. To address this issue, we conducted two experiments in which we investigated age differences in speech perception when background noise and talker variability are manipulated, two factors known to be detrimental to speech perception. In Experiment 1, we examined the relationship between speech perception, hearing and auditory attention in 88 healthy participants aged 19 to 87 years. In Experiment 2, we examined cortical thickness and BOLD signal using magnetic resonance imaging (MRI) and related these measures to speech perception performance using a simple mediation approach in 32 participants from Experiment 1. Our results show that, even after accounting for hearing thresholds and two measures of auditory attention, speech perception significantly declined with age. Age-related decline in speech perception in noise was associated with thinner cortex in auditory and speech processing regions (including the superior temporal cortex, ventral premotor cortex and inferior frontal gyrus) as well as in regions involved in executive control (including the dorsal anterior insula, the anterior cingulate cortex and medial frontal cortex). Further, our results show that speech perception performance was associated with reduced brain response in the right superior temporal cortex in older compared to younger adults, and to an increase in response to noise in older adults in the left anterior temporal cortex. Talker variability was not associated with different activation patterns in older compared to younger adults. Together, these results support the notion of a diffuse rather than a focal dysfunction underlying speech perception in noise difficulties in older adults.</p>

Funding / Support / Partners

logo FRQ-S logo ctrn logo fci logo cihr irsc logo nserc logo MESISentinelle nord