Daniel C. Côté, Ph.D.
Full Professor
Using new imaging technologies to better understand evolution of neurodegenerative diseases such as multiple sclerosis
A physicist by training, Professor Daniel Côté works with neurobiologists to develop imaging technologies that can visualize brain cells and determine their level of activity, or that can help with surgery. This approach, based on the use of lasers, optical fibers and the application of complex physical principles, provides a better understanding of the functioning of the brain in health or disease.
The technologies developed by Dr. Côté's team have recently led to a better understanding of the changes in neurons caused by multiple sclerosis or adversity during childhood. Dr. Côté has developed a method to visualize myelin, a protective sheath that surrounds neurons and deteriorates in inflammatory situations, both in live animals and in the human brain. A better understanding of the mechanisms and initial steps that lead to this deterioration offers new hope for the treatment of these devastating diseases.
"Visualizing the early stages of the disease, understanding its evolution and its causes, allows us to develop better drugs, which will act in a targeted way and have less side effects," says Pr. Côté.
The technologies developed by Dr. Côté's team are also used to study other neurological conditions, such as brain injury, deep stimulation, the impact of adversity in childhood on depression in adolescence, or Alzheimer's or Parkinson's diseases.
Amongst all current imaging modalities, optical microscopy is the only method capable of probing live tissue with cellular and subcellular resolution and is the only one with a broad range of molecular contrast mechanisms. Imaging strategies based on novel contrast mechanisms can be developed and integrated into current technology to enhance a biologist’s toolbox, or can be developed into new imaging devices to enable innovative applications in life sciences. Our group stands at the interface between optical technologies and biology, and we pursue a research program that has the following long-term objectives:
1) To develop and adapt novel optical contrast mechanisms to biological imaging,
2) To build new devices optimized for biological imaging applications,
3) To combine these optical techniques and devices for innovative biology applications.
[1] R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy.,” Sci Rep, vol. 6, p. 31685, 2016.
[2] V. Breton-Provencher, K. Bakhshetyan, D. Hardy, R. R. Bammann, F. Cavarretta, M. Snapyan, D. Côté, M. Migliore, and A. Saghatelyan, “Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb.,” Nat Commun, vol. 7, p. 12659, 2016.
[3] R. P. Bonin, F. Wang, M. Desrochers-Couture, A. Ga Secka, M.-E. Boulanger, D. Côté, and Y. De Koninck, “Epidural optogenetics for controlled analgesia.,” Mol Pain, vol. 12, no. 0, 2016.
[4] E. Bélanger, R. Turcotte, A. Daradich, G. Sadetsky, P. Gravel, K. Bachand, Y. De Koninck, and D. Côté, “Maintaining polarization in polarimetric multiphoton microscopy.,” J Biophotonics, vol. 8, no. 11, pp. 884–888, Nov. 2015.
[5] N. Stikov, J. S. W. Campbell, T. Stroh, M. Lavelée, S. Frey, J. Novek, S. Nuara, M.-K. Ho, B. J. Bedell, R. F. Dougherty, I. R. Leppert, M. Boudreau, S. Narayanan, T. Duval, J. Cohen-Adad, P.-A. Picard, A. Gasecka, D. Côté, and G. B. Pike, “Quantitative analysis of the myelin g-ratio from electron microscopy images of the macaque corpus callosum.,” Data Brief, vol. 4, pp. 368–373, Sep. 2015.
[6] N. Stikov, J. S. W. Campbell, T. Stroh, M. Lavelée, S. Frey, J. Novek, S. Nuara, M.-K. Ho, B. J. Bedell, R. F. Dougherty, I. R. Leppert, M. Boudreau, S. Narayanan, T. Duval, J. Cohen-Adad, P.-A. Picard, A. Gasecka, D. Côté, and G. B. Pike, “In vivo histology of the myelin g-ratio with magnetic resonance imaging.,” Neuroimage, vol. 118, pp. 397–405, Sep. 2015.
[7] S. Bégin, O. Dupont-Therrien, E. Bélanger, A. Daradich, S. Laffray, Y. De Koninck, and D. Côté, “Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue.,” Biomedical Optics Express, vol. 5, no. 12, pp. 4145–4161, Dec. 2014.
[8] B. Aubé, S. A. Lévesque, A. Paré, É. Chamma, H. Kébir, R. Gorina, M.-A. Lécuyer, J. I. Alvarez, Y. De Koninck, B. Engelhardt, A. Prat, D. Côté, and S. Lacroix, “Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases.,” J. Immunol., vol. 193, no. 5, pp. 2438–2454, Sep. 2014.
[9] J. A. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu, J. M. Runnels, W. Zaher, L. J. Mortensen, C. Alt, R. Turcotte, R. Yusuf, D. Côté, S. A. Vinogradov, D. T. Scadden, and C. P. Lin, “Direct measurement of local oxygen concentration in the bone marrow of live animals.,” Nature, vol. 508, no. 7495, pp. 269–273, Apr. 2014.
[10] J. Mertz, A. Gasecka, A. Daradich, I. Davison, and D. Côté, “Phase-gradient contrast in thick tissue with a scanning microscope.,” Biomedical Optics Express, vol. 5, no. 2, pp. 407–416, Feb. 2014.
[11] V. Breton-Provencher, D. Côté, and A. Saghatelyan, “Activity of the Principal Cells of the Olfactory Bulb Promotes a Structural Dynamic on the Distal Dendrites of Immature Adult-Born Granule Cells via Activation of NMDA Receptors,” The Journal of neuroscience, vol. 34, no. 5, pp. 1748–1759, Jan. 2014.
[12] A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy.,” Opt Lett, vol. 38, no. 21, pp. 4510–4513, Nov. 2013.
[13] S. Bégin, E. Bélanger, S. Laffray, B. Aubé, É. Chamma, J. Bélisle, S. Lacroix, Y. De Koninck, and D. Côté, “Local assessment of myelin health in a multiple sclerosis mouse model using a 2D Fourier transform approach.,” Biomedical Optics Express, vol. 4, no. 10, pp. 2003–2014, 2013.
[14] E. Bélanger, J. Crépeau, S. Laffray, R. Vallée, Y. De Koninck, and D. Côté, “Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy,” J Biomed Opt, vol. 17, no. 2, pp. 021107–021107–7, 2012.
[15] E. Bélanger, F. P. Henry, R. Vallée, M. A. Randolph, I. E. Kochevar, J. M. Winograd, C. P. Lin, and D. Côté, “In vivo evaluation of demyelination and remyelination in a nerve crush injury model.,” Biomedical Optics Express, vol. 2, no. 9, pp. 2698–2708, Sep. 2011.
[16] S. M. Choi, W. H. Kim, D. Côté, C.-W. Park, and H. Lee, “Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope.,” vol. 19, no. 5, pp. 4357–4368, Feb. 2011.
[17] J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice.,” Journal of biomedical optics, vol. 16, no. 2, p. 021109, Feb. 2011.
[18] S. Pagès, D. Côté, and P. De Koninck, “Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons.,” Front Cell Neurosci, vol. 5, p. 20, 2011.
[19] S. Laffray, S. Pagès, H. Dufour, P. De Koninck, Y. De Koninck, and D. Côté, “Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue.,” PLoS ONE, vol. 6, no. 5, p. e19928, 2011.
[20] S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system.,” Biomedical Optics Express, vol. 2, no. 5, pp. 1296–1306, 2011.
[21] O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination.,” Biomedical Optics Express, vol. 2, no. 3, pp. 696–704, 2011.
[22] J. Fujisaki, J. Wu, A. L. Carlson, L. Silberstein, P. Putheti, R. Larocca, W. Gao, T. I. Saito, C. lo Celso, H. Tsuyuzaki, T. Sato, D. Côté, M. Sykes, T. B. Strom, D. T. Scadden, and C. P. Lin, “In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche.,” Nature, vol. 474, no. 7350, pp. 216–219, 2011.

2601 Chemin de la Canardière
Québec (Québec)
G1J 2G3
Canada