Differential expression of sodium channel β subunits in dorsal root ganglion sensory neurons.

Publication Type:

Journal Article


J Biol Chem, Volume 287, Issue 18, p.15044-53 (2012)


<p>The small-diameter (<25 μm) and large-diameter (>30 μm) sensory neurons of the dorsal root ganglion (DRG) express distinct combinations of tetrodotoxin sensitive and tetrodotoxin-resistant Na(+) channels that underlie the unique electrical properties of these neurons. In vivo, these Na(+) channels are formed as complexes of pore-forming α and auxiliary β subunits. The goal of this study was to investigate the expression of β subunits in DRG sensory neurons. Quantitative single-cell RT-PCR revealed that β subunit mRNA is differentially expressed in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons. This raises the possibility that β subunit availability and Na(+) channel composition and functional regulation may differ in these subpopulations of sensory neurons. To further explore these possibilities, we quantitatively compared the mRNA expression of the β subunit with that of Na(v)1.7, a TTX-sensitive Na(+) channel widely expressed in both small and large DRG neurons. Na(v)1.7 and β subunit mRNAs were significantly correlated in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons, indicating that these subunits are coexpressed in the same populations. Co-immunoprecipitation and immunocytochemistry indicated that Na(v)1.7 formed stable complexes with the β(1)-β(3) subunits in vivo and that Na(v)1.7 and β(3) co-localized within the plasma membranes of small DRG neurons. Heterologous expression studies showed that β(3) induced a hyperpolarizing shift in Na(v)1.7 activation, whereas β(1) produced a depolarizing shift in inactivation and faster recovery. The data indicate that β(3) and β(1) subunits are preferentially expressed in small and large DRG neurons, respectively, and that these auxiliary subunits differentially regulate the gating properties of Na(v)1.7 channels.</p>

Funding / Support / Partners

logo FRQ-S logo ctrn logo fci logo cihr irsc logo nserc logo MESISentinelle nord