Enhanced Delivery of Ligand-Conjugated Antisense Oligonucleotides (C16-HA-ASO) Targeting Dystrophia Myotonica Protein Kinase Transcripts for the Treatment of Myotonic Dystrophy Type 1.

Publication Type:

Journal Article


Hum Gene Ther, Volume 33, Issue 15-16, p.810-820 (2022)


Animals, Disease Models, Animal, Humans, Ligands, Mice, Muscle, Skeletal, Myotonic Dystrophy, Oligonucleotides, Antisense, RNA, Trinucleotide Repeat Expansion


<p>Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder that affects many organs. It is caused by the expansion of a cytosine-thymine-guanine triplet repeat in the 3' untranslated region of the human dystrophia myotonica protein kinase (h) gene, which results in a toxic gain of function of mutant h RNA transcripts. Antisense oligonucleotides (ASOs) have emerged in recent years as a potential gene therapy to treat DM1. However, the clinical efficacy of the systemic administration of ASOs is limited by a combination of insufficient potency and poor tissue distribution. In the present study, we assessed the potential of a new ligand-conjugated ASO (IONIS-877864; C16-HA-ASO) to target mutant h mRNA transcripts in the DMSXL mouse model of DM1 carrying over 1000 CTG pathogenic repeats. DMSXL mice were treated subcutaneously for 9 weeks with either IONIS-877864 (12.5 or 25 mg/kg) or IONIS-486178 (12.5 or 25 mg/kg), an unconjugated ASO with the same sequence. At 25 mg/kg, IONIS-877864 significantly enhanced ASO delivery into the striated muscles of DMSXL mice following systemic administration compared with the unconjugated control. IONIS-877864 was also more efficacious than IONIS-486178, reducing mutant h transcripts by up to 92% in the skeletal muscles and 78% in the hearts of DMSXL mice. The decrease in mutant h transcripts in skeletal muscles caused by IONIS-877864 was associated with a significant improvement in muscle strength. IONIS-877864 was nontoxic in the DMSXL mouse model. The present study showed that the C16-HA-conjugated ASO is a powerful tool for the development of gene therapy for DM1.</p>

Financement / Soutien / Partenaires

logo FRQ-S logo ctrn logo fci logo cihr irsc logo nserc logo MESISentinelle nord