Publications
Export 15 results:
Filtres: Keyword is Movement [Enlever les filtres]
« Functional brain stem circuits for control of nose motion. », J Neurophysiol, vol. 121, nᵒ 1, p. 205-217, 2019.
, « Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept. », J Neuroeng Rehabil, vol. 12, p. 2, 2015.
, « Does the processing of sensory and reward-prediction errors involve common neural resources? Evidence from a frontocentral negative potential modulated by movement execution errors. », J Neurosci, vol. 34, nᵒ 14, p. 4845-56, 2014.
, « Towards a wireless optical stimulation system for long term in-vivo experiments. », Conf Proc IEEE Eng Med Biol Soc, vol. 2014, p. 2024-7, 2014.
, « Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals. », J Neurosci Methods, vol. 212, nᵒ 2, p. 237-41, 2013.
, « Motor imagery and aging. », J Mot Behav, vol. 45, nᵒ 1, p. 21-8, 2013.
, « Local field potentials allow accurate decoding of muscle activity. », J Neurophysiol, vol. 108, nᵒ 1, p. 18-24, 2012.
, « Modulation of the response to a somatosensory stimulation of the hand during the observation of manual actions. », Exp Brain Res, vol. 208, nᵒ 1, p. 11-9, 2011.
, « Is somatosensory excitability more affected by the perspective or modality content of motor imagery? », Neurosci Lett, vol. 493, nᵒ 1-2, p. 33-7, 2011.
, « Motor cortex gates vibrissal responses in a thalamocortical projection pathway. », Neuron, vol. 56, nᵒ 4, p. 714-25, 2007.
, « Linear summation of cat motor cortex outputs. », J Neurosci, vol. 26, nᵒ 20, p. 5574-81, 2006.
, « A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. », Stroke, vol. 37, nᵒ 8, p. 2115-22, 2006.
, « Imaging speech production using fMRI. », Neuroimage, vol. 26, nᵒ 1, p. 294-301, 2005.
, « Motor cognition: a new paradigm to study self-other interactions. », Curr Opin Neurobiol, vol. 14, nᵒ 2, p. 259-63, 2004.
, « Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements. », Neuroimage, vol. 16, nᵒ 1, p. 142-57, 2002.
,